
Radar Display GPU Coding
With The Graphics API

Prita Sharma1, Venkata Nagabhushanam2, Rekha Bhandarkar3, L.Ramakrishnan2 , Ravi Prakash Reddy M2
1 System Engineer Trainee, Infosys Technologies, Mysore, India

2 Central Research Laboratory, Bharat Electronics Limited, Bangalore, India
3 Dept. of ECE, Nitte Mahalinga Adyanthaya Memorial Institute of Technology, Nitte, India

pritasharma25@gmail.com

Abstract: The graphics display plays a crucial role in a Radar
System. The main objective is to achieve a configurable software
based scan converter for radar display with rich graphic features
on an indigenous embedded hardware. An accurate, effective and
real-time radar display is built by coding a graphics GPU, which
is coded with help of OpenGL API.

Keywords- radar display, GPU, Embedded, OpenGL, graphics
hardware

I. INTRODUCTION
RADAR scan conversion, which is needed to

transform polar coordinate ultrasound data into Cartesian
coordinate data consumable by standard graphics systems, is
one of the performance bottlenecks of a Radar Display
system. Many current systems employ custom FPGA based
hardware or DSPs to create scan converters. However with
the increasing speed of computers and their graphics
systems, PCs are now a viable platform for Radar Display
systems. This paper proposes using the texture mapping
capabilities of OpenGL and leverage the graphics system to
perform scan conversion module of Radar Display. The new
OpenGL algorithm effectively off-loads the heavy lifting of
scan conversion, the thousands of interpolations that must be
performed, to the GPU. This should dramatically improve
the throughput of the conversion and free up CPU cycles on
the general purpose processor for other tasks. This paper
demonstrates the viability of using texture mapping feature
of OpenGL to perform scan conversion.

With the advancement of Embedded Computing

Graphics Processing technologies, radar displays are
changing in terms of performance and rich user interface
presentation. Modern Graphical Processing Unit [3]
(GPU's) is sophisticated processors offering multiple cores
and pipelines. GPUs support their own graphics language to
run. Figure 1 shows Modern day computer that has a
dedicated Graphics Processing Unit (GPU) to produce
images for the display, with its own graphics memory (or
Video RAM or VRAM).The GPU technology has found a
niche in embedded systems are variants of desktop or laptop
graphics cards, featuring GPU's, onboard texture memory.
This architecture is combined with optimized Open-GL[3]
drivers for high-speed color bits enables software-based

video keying at very high speeds. This means that graphics
comprising underlay and overlays can be seamlessly fused
with radar, or other sensor video, to create a composite
display that even surpasses the display capabilities of some
dedicated hardware L[9] radar scan converters. OpenGL is
popular in the embedded graphics community and hence
being the choice for this implementation. It offers the most
appropriate feature set, also is well supported by the COTS
graphic chip providers. OpenGL implementation provides
application developers a flexible way to produce graphics [4]
applications.

Figure 1. Computer Graphics Hardware

II. BASICS OF EMBEDDED GRAPHICS
I APIs to code GPUs

OpenGL is a cross platform library that is used for
interfacing with programmable GPU's for rendering 3D
graphics. OpenGL[14] is a standard that has grown to be a
large API[7]. Standardized subsets hence provide a key to
using OpenGL in safety-critical and deep embedded
environments, eliminating redundant capability and stressing
simplicity and small footprint.

 In computer graphics, rendering is process of
producing image on the display screen from the given
modular description. This OpenGL simplistically is used in
our application to draw visuals. Figure 2 shows the rendering
pipeline of OpenGL, which provides the approach to draw
2D and 3D data with help of primitive’s elements[10] (points,

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 1 10-14 December 2013

lines, triangles, line strips, triangle strips, etc). The elements
are specified using a sequence of vertices, with each vertex
containing multiple data (position, color, surface normal,
texture coordinates).

Figure 2. The OpenGL Rendering Pipeline

The rendering pipeline has four stages mainly:

• Transform and process individual vertices.
• Convert each connected vertices (primitive) into

fragments. A fragment is a pixel which is aligned
with the pixel grid with attributes (like color,
position, normal, texture).

• Process the individual fragments.
• The fragments of all primitives are combined into

2D color-pixel for the output display.

The GPU's can also be coded with GLSL[11]. That is the
vertex and fragment processing stages are programmable
known as vertex shader and fragment shader. The
rasterization and output merging stages on the other hand are
not programmable but are configurable (via commands
issued to the GPU).

II Radar Scan Conversion

The radar-scan[5] data received is the range and
azimuth information that is in polar coordinates system and
in order to be displayed on a 2-Dimentional display screen it
needs to be converted to Cartesian format and this
conversion is known as Radar scan conversion[15]. As the
radar antenna moves around the azimuth increases steadily, a
number of pulses are transmitted to detect targets around the
site. Typically can be 4096 pulses (12 bit encoding), 16384
pulses (14 bit encoding) or 65536 (16 bit encoding) in serial
form per 360 degree of rotation are known as the ACP
(Azimuth Count Pulses). The pulses assumed in this software
code implemented are 4096; however the implementation is
flexible to be altered to desired pulses. After every complete
rotation of the antenna new scan data is generated, which is
converted and hence updated on display screen. The main
task is to convert these data to Cartesian (x, y) display
coordinates, creating the necessary display pixels. As the
input data available to display system is polar coordinate
form, when displayed as it is will produce a B-mode frame.
Thus scan conversion is needed to transform the polar
coordinate data into standard Cartesian coordinates that are
needed by standard graphics subsystems. Figures 3 and 4

illustrate a B-mode frame of a radar scan data before and
after scan conversion.

Figure 3. Raw B-mode RADAR data

Figure 4. Scan-converted radar data.

III. IMPLEMENTATION
There are a number of transformation methods to

perform radar scan conversion; however the most efficient in
our perspective is used. This implementation uses the texture
mapping function of OpenGL to map the raw B-mode data
onto a sector shape that fits the dimensions of the scan
converted image. The sector is defined using adjacent
quadrilaterals (quads) as shown in Fig. 5. Two of the vertices
of each quad are always at the origin (also the axis of rotation
in the mechanical system) and the other two vertices lie on
the outside of the sector at distance r from the origin. As the
quads are defined, texture coordinates are mapped to each
vertex. Each texture coordinate refers to a specific location in
the raw B-mode data, and once a texture coordinate has been
assigned to all four vertices of a quad the OpenGL library
can map that portion of the data onto the sector. The code

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 2 10-14 December 2013

excerpt in Fig. 6 demonstrates how the quads and texture
coordinates are defined. Each time through the loop four
vertices are defined at the specified angle, two at the origin
and two at the edge of the sector. The texture coordinates
mapped to these vertices correspond to the beginning and
ending points of the vectors in the B-mode image.

Figure 5. Texture vertices mapped to Quadrilateral vertices.

for(int i=0;i<sectors;i=i+1)
{
 glBegin(GL_POLYGON);

glTexCoord2f(0.0,(float)i/(float)sectors);
glVertex2f(0.0,0.0);
glTexCoord2f(1.0,(float)i/(float)sectors);
glVertex2f(cos((double)i*2*M_PI/sectors) * r,
sin((double)i*2*M_PI/sectors) * r);
glTexCoord2f(1.0,(float)(i+1)/(float)sectors);
glVertex2f(cos((double)(i+1)*2*M_PI/sectors) * r,
sin((double)(i+1)*2*M_PI/sectors) * r);
glTexCoord2f(0.0,(float)(i+1)/(float)sectors);
glVertex2f(0.0,0.0);

 glEnd();
}

Figure 6. Code illustrating sector definition and texture coordinate
mapping.

Once the entire mapping is complete, the OpenGL
library performs all of the necessary interpolations to define
each pixel in the final image. OpenGL can be directed to
handle the interpolations in two basic ways: nearest and
linear. Using the nearest option, the library finds the data
point in the texture (the B-mode data) and uses its value for
the value of the pixel, just like the nearest neighbor
algorithm. Similarly the linear option directs the library to
perform bilinear interpolation using the four closest data
points in the texture. In this implementation the linear option
(bilinear interpolation) is used. Since the interpolation occurs
within the OpenGL library this implementation can leverage
the processing power of the graphics hardware of the PC.
Furthermore, OpenGL is platform independent and can
interact with the graphics hardware of any standard PC.
These advantages should provide better throughput for the
radar display system. This method of implementation has
taken on average 0.02 seconds per frame.

CONCLUSION
A GPU accelerated software based scan converter

for radar display with rich graphic features is achieved using
Texture mapping feature of OpenGL library. The software
code implementation for the radar display for 4096 ACPs
was successfully written using the above stated algorithm. It
was run and tested on visual studio 2008 express version,
with help of default radar data input files. In terms of
throughput the new OpenGL algorithm is much faster than
the traditional linear interpolation and bilinear interpolation
algorithms. By leveraging the power of the graphics system
of the PC the OpenGL algorithm is not only able to provide
more throughput, it off-loads most of the work from the
general purpose CPU. With the performance bottleneck of
scan conversion pushed onto the GPU, the CPU is now free
to perform other operations necessary for the Radar Display
System such as handling user input, or data management.
Using OpenGL is not only a relatively easy way to
implement a radar scan converter, it is a much more efficient
use of a systems resources.

ACKNOWLEDGMENT

The authors express sincere acknowledgements to Mr.
Mahesh.V Chief Scientist, CRL, BEL, Bangalore and
Management of Bharat Electronics Limited for
encouragement and support to write this paper. Also authors
express sincere thanks to Mr.P.Ramesh Babu Senior
Research Staff and Mr.Ranganath Member Research Staff
CRL, BEL for their helpful contribution in this research
work.

REFERENCES
[1] Prita Sharma, Venkata Nagabhushanam, Rekha Bhandarkar,

L.Ramkrishnan,“Multi layered Graphics engine using high speed
Embedded platform for RADAR applications”, ICETE 2013.

[2] George W.Stimson, “Introduction to AIRBORNE RADAR”, 2nd edition
SciTECH Publishing,Inc.

[3] Aaftab Munshi, Dan Ginsburg, Dave Shreiner,“OpenGL®ES 2.0
Programming Guide”, Addison-Wesley publication.

[4] Richard S.Wright,Jr., Benjamin Lipchak, Nicholas Haemel, “OpenGL
Super Bible”,4th edition, Addison-Wesley Publication.

[5] Norman lin, “Advanced linux 3d graphics programming”, 2001
Wordware Publishing Inc.

[6] Brett Borden, “Radar Imaging of Airborne Targets”, IOP Publishing
Ltd 1999.

[7] Phil Cole, “OPENGL ES SC – OPEN STANDARD EMBEDDED
GRAPHICS API FOR SAFETY CRITICAL APPLICATIONS”, 24th
Digital Avionics Systems Conference October 30, 2005.IEEE,VOL 2.

[8] Mark Snyder, Quantum3D, Glendale, AZ, “Solving the embedded
OpenGL puzzle- making standards, tools and API's work together in
highly embedded and safety critical environments” 24th Digital
Avionics Systems Conference October 30, 2005.IEEE,VOL 2.

[9] Niklas Peinecke, Hans-Ullrich Doehler, and Bernd R. Korn,
“Simulation of Imaging Radar Using Graphics Hardware
Acceleration” , 2008 SPIE Digital Library Proc. of SPIE Vol. 6957
69570L-1.

[10] Huang Xiying, Shao Wei, XU Renji, Lining, "Modeling and
Application of Three-Dimentional Special Data Field for Radar
Detection Range",2012 International Conference on Computer Science
and Electronics Engineering, 978-0-7695-4647-6/12.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 3 10-14 December 2013

[11] OpenGL Common/Common-Lite Profile Specification, V 1.0.02, The
Knronos Group, 2004.

[12] OpenGL ES Safety Critical Profile Specifications, V 1.0. the khronos
Group, 2005.

[13] JungHyun Han, “3D Graphics for Game Programming”, CRCPress,
2011.

[14] OpenGL mother site @ www.opengl.org.
[15] Radartutorial (www.radartutorial.eu)
[16] Online lecture:http://cs.berkeley.edu/~ravir
[17] Nate Robin's OpenGL Tutor

@http://www.xmission.com/~nate/opengl.html.
[18] Nehe OpenGL Tutorials @ http://nehe.gamedev.net.
[19] Scan conversion @http://www.cambridgepixel.com

BIO DATA OF AUTHOR(S)

Miss Prita Sharma is currently
undergoing training at Infosys
Technologies as a System Engineer
Trainee at Mysore. She had completed her
M.Tech in VLSI Design and Embedded
Systems from NITTE in 2013 and B.Tech
(ECE) from RIT in 2011. Was an intern at
CRL-BEL Bangalore for over 10 Months
during 2012-13 as a part of her project
phase in her M.Tech. She is a specialist in
embedded systems and has specialised in
C++ and Java from NIIT.

 Ms. Rekha Bhandarkar completed her
B.E in ECE in 1989 and M.Tech. in Digital
Electronics in 2001. She has submitted her
thesis for Ph.D. on “Cochlear filter
implementation on FPGA”. She is
currently an Associate Professor in the
Dept. of Electronics and Communication at
NMAM Institute of Technology Nitte. Her
areas of interest include Signal
Processing,VLSI and Embedded Systems.

Mr. J Venkata Nagabhushana J is a
B.Tech (CSE) & ME (CSE). He started his
career in embedded systems for RADAR
applications and his areas of interest
include Design & Development of Linux
and Vx Works Board Support Packages for
Power PC SBCs, Implementation of Multi-
target Tracking algorithms and RADAR
Display Software. Currently he is a
Member SRS at CRL, BEL.He is involved
in design and development of embedded
computing products & signal processing
systems for radar applications. He has been
bestowed with BEL & R&D Excellence
award.

Mr.L.Ramakrishnan obtained
B.Tech (Electronics Engg) MIT, Anna
University & ME (ECE) OU. Starting
his career at HAL, worked in projects
including Air borne Transponders,
Airborne radar for modern Indian
fighter aircrafts, Air Route
Surveillance Radar, Radio Proximity
fuses etc. His area of professional

interest includes Design and Development of front ends for Radar,
Wireless & Communications Systems. He is currently serving as
Member (SRS) & Group Head at Central Research Laboratory,
BEL. He presently is involved in the design and development of
embedded computing products & signal processing sub systems for
radar applications. He has over twelve reputed publications to his
credit. As part of team, he has been bestowed with Raksha Mantri’s
award under Innovation Category and BEL R&D Excellence
Awards. He is Member (IEEE) and certified PMP.

Mr. Ravi Prakash Reddy M is a B.Tech (CSE)
& M-Tech(CSE) from NIT Calicut. He is
Working as Member Research Staff in Central
Research Laboratory, BEL. He fields of intrest
are of Radar display Systems, VxWorks and
Linux Board Support packages for PowerPC
SBC.

9th International Radar Symposium India - 2013 (IRSI - 13)

NIMHANS Convention Centre, Bangalore INDIA 4 10-14 December 2013

